¥í¥°¥¤¥ó¤·¤Æ¤µ¤é¤Ëmixi¤ò³Ú¤·¤â¤¦

¥³¥á¥ó¥È¤òÅê¹Æ¤·¤Æ¾ðÊó¸ò´¹¡ª
¹¹¿·ÄÌÃΤò¼õ¤±¼è¤Ã¤Æ¡¢ºÇ¿·¾ðÊó¤ò¥²¥Ã¥È¡ª

¿ôÍý¥Õ¥¡¥¤¥Ê¥ó¥¹¥³¥ß¥å¤Î¤Ï¤¸¤á¤Þ¤·¤Æ¡£

  • mixi¥Á¥§¥Ã¥¯
  • ¤³¤Î¥¨¥ó¥È¥ê¡¼¤ò¤Ï¤Æ¤Ê¥Ö¥Ã¥¯¥Þ¡¼¥¯¤ËÄɲÃ
°ÂÄêʬÉۤˤĤ¤¤ÆÊÙ¶¯¤·¤Æ¤¤¤ëÂç³ØÀ¸¤Ç¤¹¡£

¿ô³Ø¤ÎÃ챤¬ÉÔ­¤·¤Æ¤¤¤ë¤¿¤á¡¢Ê¬¤é¤Ê¤¤ÌäÂ꤬¤¢¤ê¡¢¶µ¤¨¤Æ¤¤¤¿¤À¤±¤¿¤é¹¬¤¤¤À¤È»×¤¤¡¢¤³¤³¤Ë½ñ¤­¹þ¤Þ¤»¤Æ¤¤¤¿¤À¤­¤Þ¤¹¡£

µÕ´Ø¿ô¤Îµá¤áÊý¤ò¶µ¤¨¤ÆÄº¤­¤¿¤¤¤Î¤Ç¤¹¤¬¡¢

Àµµ¬Ê¬ÉÛ exp( - ¦Ã¡Ãz¡Ã¡°2 ) ¢ªµÕ´Ø¿ô exp(- x^2 /4) / 2 SQRT(x)
Lorentz-CauchyʬÉÛ exp( - ¦Ã¡Ãz¡Ã ) ¢ªµÕ´Ø¿ô1/(¦Ð + ¦Ð x^2)
Levy-SmirnovʬÉÛ exp(- SQRT(¡Ãz¡Ã) ¢ªµÕ´Ø¿ô(1 – I sin(z)) exp(-1/2x)SQRT(2¦Ð)x^(3/2)

¾åµ­¤Î¤è¤¦¤ËÆÃÀ­´Ø¿ô¤«¤éµÕ´Ø¿ô¤ò»È¤¤¡¢³ÎΨ̩Åٴؿô¤òµá¤á¤ëÊýË¡¤¬¤ï¤«¤ê¤Þ¤»¤ó¡£
¤É¤Î¤è¤¦¤Ê·×»»¤ò¤¹¤ì¤Ð¡¢µÕ´Ø¿ô¤¬µá¤á¤é¤ì¤ë¤Î¤«¡¢¶ñÂÎŪ¤Ë¶µ¤¨¤ÆÄº¤±¤ë¤È¹¬¤¤¤Ç¤¹¡£
¾åµ­¤ÈƱ¤¸¤è¤¦¤Ë¡¢µÕ´Ø¿ô¤òµá¤á¤ë¤È¤·¤¿¤é¡¢²¼µ­¤Î¼°¤ÎµÕ´Ø¿ô¤Ï¤É¤Î¤è¤¦¤Ë¤Ê¤ë¤Î¤Ç¤·¤ç¤¦¤«¡©


L = exp( - ¦Ã¡Ãz¡Ã¡°¦Á (1+ i¦Â sin(z) tan(¦Ð ¦Á/2 ) ) + i ¦Ä z) if ¦Á ¡â 1
L = exp(- ¦Ãüüzüü (1+ i ¦Â sin(z) 2/¦Ð lnüüzüü) ) + i¦Ä z) if ¦Á = 1

¤è¤í¤·¤¯¤ª´ê¤¤Ãפ·¤Þ¤¹¡£

¥³¥á¥ó¥È(1)

¥ì¥Ó¥£¤Îȿž¸ø¼°¤òÍøÍѤ·¤Þ¤¹¤¬¡¢
°ÂÄêʬÉۤϥ³¡¼¥·¡¼¡¢Àµµ¬Ê¬ÉۤΣ²¤Ä°Ê³°¤Ï½éÅù´Ø¿ô¤Ë¤ÆÌ©Åٴؿô¤òÆÃÄê¤Ç¤­¤Ê¤¤¤³¤È¤¬ÃΤé¤ì¤Æ¤¤¤Þ¤¹¡£

¥í¥°¥¤¥ó¤¹¤ë¤È¡¢¤ß¤ó¤Ê¤Î¥³¥á¥ó¥È¤¬¤â¤Ã¤È¸«¤ì¤ë¤è

mixi¥æ¡¼¥¶¡¼
¥í¥°¥¤¥ó¤·¤Æ¥³¥á¥ó¥È¤·¤è¤¦¡ª

¿ôÍý¥Õ¥¡¥¤¥Ê¥ó¥¹ ¹¹¿·¾ðÊó

¿ôÍý¥Õ¥¡¥¤¥Ê¥ó¥¹¤Î¥á¥ó¥Ð¡¼¤Ï¤³¤ó¤Ê¥³¥ß¥å¥Ë¥Æ¥£¤Ë¤â»²²Ã¤·¤Æ¤¤¤Þ¤¹

À±°õ¤Î¿ô¤Ï¡¢¶¦Ä̤·¤Æ»²²Ã¤·¤Æ¤¤¤ë¥á¥ó¥Ð¡¼¤¬Â¿¤¤¤Û¤ÉÁý¤¨¤Þ¤¹¡£

¿Íµ¤¥³¥ß¥å¥Ë¥Æ¥£¥é¥ó¥­¥ó¥°