ログインしてさらにmixiを楽しもう

コメントを投稿して情報交換!
更新通知を受け取って、最新情報をゲット!

「自由クラス理論」非標準集合論コミュのFree Class Theory 5

  • mixiチェック
  • このエントリーをはてなブックマークに追加
3. Theorem

Theorem for the properties which Class Theory of each type has.


[ Theorem of Type.1 ]

 T.1−1  ¬Obj u 
 T.1−2  Set u  [A.Cl]
 T.1−3  ∀b Prcl b ⇒ Set b
 T.1−4  ∃k Ind k

    Individual is able to exist.
    A.Pair   We ashume this Axiom
    Set u Hence
    {u} ma k  So
    Set k
    Class k is Set, so it is possible to assume k is Obj
    Obj k    −*−
    From T.1−1  
    ¬Obj u Hence
    ¬At {u} Hence
    ¬Cl k  [A.Cl]
     From *
    Ind k

    Where Class k which Atsumari {u} whose member is Universal class u
makes is able to be Individual

[ A.*** ] means the Axiom *** is asumed

 T.1−5  ∀y Set_ob



In Class Theory of this type, Ind and Obcl and Prcl are all Set.
For example, Class r which is ¬Set has no relationship with it

Example of Class Theory of Type.1
ZF belongs to this type.

A.Reg arrives at the condition of Type.1


[ Theorem oof Type.2 ]

 T.2−1  ∀y ¬Set_ob y ⇒ Obj y  −R_ob ⊂ U
 T.2−2  ¬Set_ob r  
 T.2−3  ¬Set_ob –r_ob
 T.2−4  ¬∃y Ind y     [A.{ }]
 T.2−5  ¬∃y Prcl y    [A. Cl ]   


Example of Class Theory of Type.2
FC belongs in this Type.

If we defined that all Classes are Obj then it becomes a representation of "FC" on FC. Naturally R⊂U

    Obj y  Df.  y=y

In FC, all Classes are elements and all Classes are made by Atsumari so neither Indiviual nor Proper Class exist.


[ Theorem of Type.3 ]

 T.3−0   Set_ob r               [A.Cl]

 T.3−1  ¬Set u ∧ Obj u        [A.Cl]
                              [A.At]
                              [A.{ }]

 T.3−2  ¬Set_ob u               [A.Cl]
                              [A.At]
                              [A{ }]

 T.3−3  ¬Set r_ob ∧ Set_ob r_ob   [A.Cl]
                              [A.{ }]


 T.3−4  ¬Set −r ∧ Set_ob −r    [A.Cl]
                              [A.{ }]


 T.3−5  ¬Set −u ∧ ¬Obj −u    [A.Cl]
                             [A.At]
                             [A.{ }}

 T.3−6  ¬Set_ob −r_ob           [A.Cl]
                             [A.{ }]

 T.3−7  ∀y Prcl y ⇒ Set y    [A.Cl]

 T.3−8  ∀y Ind y ⇒ Set y     [A.At]


Example of Class Theory of Type.3

Quine's ML is an example of this Type.

We consider about such Atsumari N and Class n

    ∀b b∈N ⇔ b=m ∧ Set m , N ma n

"Set m" in the formula of N's condition is not able to be stratified so

¬Obj n

And with A.Pair , Set n
  Hence
    Set n ∧ ¬Obj n  −*1−

And Universal Atsumari U is able be stratified so

Obj u

With A.⊂ , ¬Set u
Hence
   ¬Set u ∧ Obj u  −*2−

And
   Set 0 ∧ Obj 0  −*3−
Where φ ma 0

Formula *1∧*2∧*3 is the condition of Type.3


[ Theorem of Type.4 ]

 T.4−1  ∀y ¬Set_ob y ⇒ Obj y

 T.4−2  ¬Obj r      [A.Cl]

 T.4−3  ¬Set_ob u     [A.Cl]
                    [A.{ }]

 T.4−4  ¬Set_ob −r_ob  [A.Cl]
                    [A.{ }]

 T.4−5  ¬Set −r ∧ Set_ob −r  [A.Cl]
                           [A.{ }]

 T.4−6  ¬Set −u ∧ ¬Obj −u  [A.Cl]
                           [A.At]
                           [A.{ }]

 T.4−7  ¬Set r_ob ∧ ¬Obj r_ob  [A.Cl]
                            [A.At]
                            [A.{ }]

 T.4−8  ∀y ¬Prc y  [A.Cl]
                   [A.{ }]

 T.4−9  ∀y ¬Ind y   [A.Cl]


No example of Class Theory of Type.4 exists in known Class Theories

コメント(0)

mixiユーザー
ログインしてコメントしよう!

「自由クラス理論」非標準集合論 更新情報

「自由クラス理論」非標準集合論のメンバーはこんなコミュニティにも参加しています

星印の数は、共通して参加しているメンバーが多いほど増えます。

人気コミュニティランキング