ログインしてさらにmixiを楽しもう

コメントを投稿して情報交換!
更新通知を受け取って、最新情報をゲット!

「自由クラス理論」非標準集合論コミュのFree Class Theory 3

  • mixiチェック
  • このエントリーをはてなブックマークに追加
 11. a contradiction of { NF + some axioms }.

 R and U have self-membership, so this concept has the meaning of "large".

  A.1. x is large ⇒ {x} is large
  A.2. b is individual ⇒ {b} is not large

 Both axioms seem to be correct.
 NF doesn't adjust to these two axioms.


A representation of a Set Theory on FC is defined in the next subsection “11-1. Object”

 11-1. Object
  If we defined "Object" in FC, then we obtain a representation of a set
theory.

   Obj x Df. a formula of x

 The formula in the definition describes what have sethood in the represented set theory.

 ex.1. a ZF like set theory

   1. Obj 0

   2. Obj a ∧ Obj b ∧ {a,b} ma c ⇒ Obj c

   3. One X ∧ X ma b ∧ Obj b ∧ UX ma c ⇒ Obj c
   One B Df. ∀X∀Y∀c X ma c ∧ Y ma c ∧ c∈B ⇒ X=Y
   UC  Df. [A[b b∈UC ⇔ ∃a∃K b∈K ∧ K ma a ∧ a∈C

   4. X ma b ∧ Obj b ∧ P(X) ma c ⇒ Obj c

   5. A ma a ∧ B ma b ∧ A⊆B ∧ Obj b ⇒ Obj a

   6. A ma a ∧ B ma b ∧ A=f"B ∧ Obj b ⇒ Obj a
    f"B  Df. the image of B with f.

   7. 0∈X ∧ (b∈X ⇒ b'∈X) ∧ X ma c ⇒ Obj c

 ex2. NF

   Obj x Df. x is stratified.

 11-2. object class , individual, proper class.
 I define some relative ideas to Object such that "At, Cl, Obcl, Ind, Prcl."

 These are abbreviations of relative "Atsumari, class, object class, individual, proper class" from a point of view on Object.

   At C Df. ∀b b∈C ⇒ Obj b

     If all members of an Atsu are Objects then the Atusmari is a relative Atsumari for the represented set theory.

     ex.1. in NF
     At {0,u} , where U ma u, ∀b∈U ⇔ b=b
     Both 0 and u are stratified, so Obj 0 ∧ Obj u

     ex.2. in NF
     ¬At {r}  , where r means Russel's class.
     r is not stratified, it means ¬Obj r

   A.At  ∀B ¬At B ⇒ (∀x x∈B ⇒ ¬Obj x)

    This axiom separates Obj and ¬Obj.

   Cl b Df. ∃C At C ∧ C ma b
     If a relative Atsumari makes a class then the class must be a relative class for the represented set theory.
     ex.  in NF
     Cl c , where {0,u} ma c

   A.Cl  ∀b Cl b ⇒ (∀X X ma b ⇒ At X)

     This axiom separates At and ¬At.

   Obcl b  Df. Cl b ∧ Obj b

   Ind x  Df. ¬Cl x ∧ Obj x

   Prcl c  Df. Cl c ∧ ¬Obj c

     These definitions are obvious.
          ex.  in ZF
          set is object and class, so ∀b setzf b ⇒ Obcl b
          where setzf means "set" in ZF.


 11-3. A contradiction of NF.

 We assume three axioms as follows :

   A.Set.  ∀C∀b (∃x x∈C ∧ C ma b ∧ ¬Set x) ⇒ ¬Set b

   ¬Set means something great like r or u, so if {u} ma k then k is also great, hence k must be ¬Set.

   A.Obcl.  ∀x∀b {x} ma b ∧ Ind x ⇒ Obcl b

   For example, an apple is individual, and if {an apple} ma b then b must be Obcl.

   A.Set'. ∀x∀b {x} ma b ∧ Ind x ⇒ Set' b

                  Set' b Df. ¬(∃C b∈C ∧ C ma b ∧ At C)

   [ A proof of { NF+A.Set.+A.Set' } has a contradiction ]

   Consider about Class r.
   ¬Set r     , where r is Russel's class.

   ¬Set r'     , where {r} ma r' . We used A,Set.

   ¬Set r''    , where {r'} ma r''. Again from A.Set.

   And, the other hand.
   ¬stratified r   , it is obvious.

   ¬Obj r     , see section 1 ex,2

   Ind r'     , ¬At {r} and use A.Cl , so ¬Cl r'. And {r} is stratified, so Obj r'

   Set' r''    , see A.Set'

   So,

   ¬Set r'' ∧ Set' r''

   It means ∃B r''∈B ∧ B ma r'' ∧ ¬At B.   (F)

   with A.At and the formula (F), we get ¬Obj r''. 

 But, stratified r'' so Obj r''. This is a contradiction.

   Another conclusion ;

   with A.Cl and the formula (F), we get ¬Cl r''.   

 But, Ind r' ∧ A.Obcl means Obcl r'', so Cl r''. It is a contradiction too.

コメント(0)

mixiユーザー
ログインしてコメントしよう!

「自由クラス理論」非標準集合論 更新情報

「自由クラス理論」非標準集合論のメンバーはこんなコミュニティにも参加しています

星印の数は、共通して参加しているメンバーが多いほど増えます。

人気コミュニティランキング