ログインしてさらにmixiを楽しもう

コメントを投稿して情報交換!
更新通知を受け取って、最新情報をゲット!

私の勉強部屋コミュの量子コンピュータ

  • mixiチェック
  • このエントリーをはてなブックマークに追加
量子コンピュータについての情報サイト(山ほど記事が)
https://www.qmedia.jp


Quantum Native Dojoは量子コンピュータについて勉強したいと思っている方のために作られた自習教材です。
https://dojo.qulacs.org/ja/latest/index.html


ざっと読もうと思ったら記事が多すぎて(´;ω;`) まぁ、ぼちぼち読みます。

wikiから

歴史
1980年代

量子コンピュータの歴史は、1980年に Paul Benioff が量子系においてエネルギーを消費せず計算が行えることを示した[2]ことに端を発し、1982年、ファインマンも量子計算が古典計算に対し指数関数的に有効ではないかと推測している[3]。これらに続き、1985年、ドイッチュは、「量子計算模型」と言える量子チューリングマシン(英語版)[4]を定義し、1989年に量子回路[5]を考案した。
1990年代

1992年に、ドイッチュとジョサ(英語版)は、量子コンピュータが古典コンピュータよりも速く解ける問題でドイッチュ・ジョサのアルゴリズムを考案した[6]。 1993年に、ウメーシュ・ヴァジラーニ(英語版)と生徒のEthan Bernsteinは、万能量子チューリングマシン(英語版)と量子フーリエ変換(英語版)のアルゴリズムを考案した[7]。

1994年にピーター・ショアは、実用的なアルゴリズム『ショアのアルゴリズム(英語版)[8]』を考案し、量子コンピュータの研究に火をつけた。これは、ヴァジラーニらの量子フーリエ変換や、同年のSimonの研究[9]を基礎に置いている。量子コンピュータ特有のアルゴリズムであるショアのアルゴリズムが、古典コンピュータでは現実的な時間で解くことができない素因数分解を、極めて短い時間で実行出来ることから、素因数分解の困難性を利用したRSA暗号の安全性は実用的な量子コンピュータが実現されれば崩れることを示した。

1995年に、アンドリュー・スティーン[10]やピーター・ショア[11]により、量子誤り訂正のアルゴリズムが考案された。 1996年に、ロブ・グローバー(英語版)により、その後、様々なアルゴリズムに応用されるグローバーのアルゴリズム[12]が考案された。同年、セルジュ・アロシュは、実験的観測によって量子デコヒーレンスを証明し、 [13][14] 量子デコヒーレンスが量子コンピュータ実現への障害となることが実証された。 1997年に、Edward FarhiとSam Gutmannにより、量子ウォーク[15](Continuous-time quantum walk、略称: CTQW)が考案された。1998年に、量子コンピュータ用のプログラミング言語である、QCL (Quantum Computation Language) の実装が公開された。

また西森秀稔による、量子焼きなまし法の提案もこの時代であった。
2000年代

ハードウェア開発に大きな進展があり、2008年にイオントラップの専門家デービッド・ワインランドは、個々のイオンをレーザー冷却して捕捉することが出来ることを示し、個々の量子もつれ状態にあるイオンをマニピュレーションする、イオン・トラップ型量子コンピュータの研究が進展した。[16]

ショアのアルゴリズムは、2001年に核磁気共鳴[17]により、2007年に量子光学[18]により、2009年に光集積回路[19]により15の素因数分解 (=3*5) が実装された。
2010年代

2011年に突如として、カナダの企業D-Wave Systemsが量子コンピュータ「D-Wave」の建造に成功したと発表した。D-Waveはこの記事の多くの部分で説明している量子ゲートによるコンピュータではなく、量子焼きなまし法による最適化計算に特化した専用計算機である。発表当初のものは128量子ビットであった[20]。D-Waveが本当に量子コンピューティングを実現したものか否か、当初は疑う向きも多かったものの、確かに量子コンピューティングによるものとする調査論文が英科学誌ネイチャーに発表[21]され、グーグルを筆頭とするベンチャー企業がD-Waveと協業を開始するなど、2018年1月現在、確実視されて来ている。

2012年、セルジュ・アロシュとデービッド・ワインランドがノーベル物理学賞を受賞した。受賞理由は「個別の量子系に対する計測および制御を可能にする画期的な実験的手法に関する業績」である。

エドワード・スノーデンの開示文書によると、NSAにおいて暗号解読のための実用化が研究されているとされる[22]。

2014年9月米グーグル社はUCSBのJohn Martinisと連携し量子コンピュータの独自開発を開始すると発表した[23]。

2016年5月、IBMは5量子ビットの量子コンピュータ[24]をオンライン公開した。デイヴィビッド・コーリー ウォータールー大学教授がテストした結果、ほぼ同じ結果を得ることができた[25]。 2017年5月、IBMは同社の汎用量子コンピュータシステムであるIBM Q向け16量子ビット・プロセッサを開発したとアナウンスした[26]

2019年1月8日、IBMはCESにおいて世界初の商用量子コンピューター(名称:IBM Q System One)を開発したと発表した[27]。

2019年10月23日、グーグルは世界最高速のスーパーコンピューターが1万年かかる計算問題を量子コンピューターは3分20秒で解くことに成功して量子超越性を世界で初めて実証したと発表し、CEOのサンダー・ピチャイは地球から最初に飛び立った宇宙ロケットに匹敵する成果と述べた[28][29]。


・・・

実際

量子ゲートマシンは理論的には古典コンピューターをシミュレート出来るとされるが、現実には古典ゲートによる小規模演算器もシミュレート出来ない。さらに、量子ゲート処理に必要な時間が論理回路より圧倒的に遅いこともあり、古典コンピュータの置き換えは不可能である。そのため、量子ゲートマシンは専用アルゴリズム開発と共に、古典コンピュータに対してある種の問題を高速に解く付加装置として利用するのが現実的である。

Googleは量子ゲートマシンの高速性が2017年末までに実証されると予想した[75]。古典コンピューターよりも実際の量子ゲートマシンの方が高速に解ける問題が存在することを、量子超越性と呼び、このような問題の探索が続けられている。2019年10月23日、Googleは、ランダムに作った量子回路の出力結果を推定すると言う問題で、量子超越性を実証したと発表した[76]。

量子ゲートマシン上で素因数分解を行うショアのアルゴリズムは、2001年にIBMが世界で初めて15(=3×5)の分解に成功した[17]。2012年にブリストル大学が21(=3×7)の素因数分解を行い記録を更新したが[77]、22以上の数の素因数分解の報告はない(2019年9月時点)。

2017年現在始まっているIBM Q[78]などではごく限られた数の量子ビットしか扱えない。重ね合わせ状態を保ちデータを記憶する量子メモリが実現されていない事、量子複製不可能定理により、計算結果を使いまわすことができない事、複数の量子コンピューターを接続し計算規模を大きくする技術が実現していない事、量子ゲートに起因する誤差が蓄積する事などから、計算大規模化が困難である。従って、現状では、与えられた問題を解くことに使われる状態ではなく、既に提案されている小規模な量子アルゴリズムの実証から始め、量子コンピュータで解ける有用な問題の模索が続いている。

量子コンピュータとしては、量子ゲート型以外に、D-Waveなどの量子アニーリングやその他いくつかのタイプが提案されている、量子イジングマシンはQUBO(制約のない二値二次式の最適化)(英語版)に特化した専用計算機と言える。

コメント(0)

mixiユーザー
ログインしてコメントしよう!

私の勉強部屋 更新情報

私の勉強部屋のメンバーはこんなコミュニティにも参加しています

星印の数は、共通して参加しているメンバーが多いほど増えます。